2013年3月12日 星期二

Innovative approach to communication

Generic multicore processors have been promoted as the solution to networking communication processing. In reality, they can’t address the scalability, determinism, and ease of programming required for next-generation networking infrastructure. An asymmetric multicore approach that blends multicore processors with networking-optimized accelerator engines and C-programmable libraries meets the challenges of next-generation networks.
Achieving deterministic performance is a key requirement for network operators to ensure reliability across wide variations of traffic profiles and applications. Multicore processors can meet performance challenges when running an application on a single, dual-core, or quad-core processor. However, when scaling to eight cores or beyond, performance scaling usually degrades. There are cases where eight cores deliver no better performance than four, and 16 cores actually run slower than eight.
Networking applications tend to be data-intensive, and generic multicore processors are highly susceptible to the impacts of memory latency on performance. The nonlinearities of memory latency (Figure 1) with regard to memory load combined with the nonlinearities of processor performance relative to memory latency can lead to unpredictable and unreliable performance. The innovative approach taken by LSI to solving this problem is asymmetrical multicore processors, which combine general-purpose processors with specialized accelerators for particular data-intensive tasks, resulting in an optimal, scalable solution.

embedded systems, gaming platform,  single board computer
Asymmetrical multicore processors improve performance predictability by combining general-purpose processors and accelerators to address the nonlinearities of memory latency.
refer: http://embedded-computing.com/articles/an-multicore-done-right244/

2013年3月5日 星期二

About embedded video interface

embedded PC, in vehicle computer, single board computer

The expectations for video quality continue to rise as more applications take advantage of video sources. Transmitting more video data at higher rates requires attention to a range of signal integrity issues summarized here.

Industrial video systems such as machine vision, surveillance equipment, and medical displays face a myriad of challenges transporting high-resolution video data from source to processor or display.
Current solutions such as Camera Link, GigE Vision, and other LVDS interfaces have served the industrial market quite well, but are now encountering obstacles associated with reliably transmitting higher-speed data over long cable lengths. Increased EMI often accompanies higher switching data rates. Also, there is the constant desire to minimize both system cost and design complexity.
....
refer:
http://industrial-embedded.com/articles/simplifying-embedded-video-interface/